Tecnologia Científica

Uma sinapse artificial mecanofotônica bioinspirada
Sistemas neurais artificiais multifuncionais e diversos podem incorporar plasticidade multimodal, memória e funções de aprendizado supervisionado para auxiliar a computação neuromórfica .
Por Thamarasee Jeewandara - 27/03/2021


Neurônios biológicos táteis / visuais e sinapses mecano-fotônicas artificiais. (A) Ilustrações esquemáticas do sistema sensorial biológico tátil / visual. (B) Diagrama esquemático da sinapse artificial mecanofotônica com base na heteroestrutura de grafeno / MoS2 (Gr / MoS2). (i) Imagem de microscópio eletrônico de varredura (SEM) de visão superior do transistor optoeletrônico; barra de escala, 5 μm. A área ciano indica o floco MoS2, enquanto a faixa branca é o grafeno. (ii) Ilustração da transferência / troca de carga para a heteroestrutura Gr / MoS2. (iii) Sinais mecanofotônicos de saída da sinapse artificial para reconhecimento de imagem. Crédito: Science Advances, doi: 10.1126 / sciadv.abd9117

Sistemas neurais artificiais multifuncionais e diversos podem incorporar plasticidade multimodal, memória e funções de aprendizado supervisionado para auxiliar a computação neuromórfica . Em um novo relatório, Jinran Yu e uma equipe de pesquisa em nanoenergia, nanociência e ciência de materiais na China e nos EUA, apresentaram uma sinapse artificial mecanofotônica bioinspirada com plasticidade óptica e mecânica sinérgica. A equipe usou um transistor optoeletrônico feito de heteroestrutura de dissulfeto de grafeno / molibdênio (MoS 2 ) e um nanogerador triboelétrico integradopara compor a sinapse artificial. Eles controlaram a transferência / troca de carga na heteroestrutura com potencial triboelétrico e modularam os comportamentos optoeletrônicos da sinapse prontamente, incluindo fotocorrentes pós-sinápticas, fotossensibilidade e fotocondutividade. A sinapse artificial mecanofotônica é uma implementação promissora para imitar o complexo sistema nervoso biológico e promover o desenvolvimento da inteligência artificial interativa. O trabalho já foi publicado na Science Advances .

Redes neurais inspiradas no cérebro.

O cérebro humano pode integrar tarefas de cognição, aprendizagem e memória por meio de interações auditivas, visuais, olfativas e somatossensoriais . Este processo é difícil de ser imitado usando arquiteturas convencionais de von Neumann que requerem funções sofisticadas adicionais . As redes neurais inspiradas no cérebro são feitas de vários dispositivos sinápticos para transmitir informações e processar usando o peso sináptico. A sinapse fotônica emergente combina a modulação neuromórfica ótica e elétrica e computação para oferecer uma opção favorável com alta largura de banda, velocidade rápida e baixo cross-talk para reduzir significativamente o consumo de energia. Movimentos biomecânicos, incluindo toque, piscar de olhos e acenar com o braço, são outros gatilhos onipresentes ou sinais interativos para operar eletrônicos durante a plastificação de sinapses artificiais . Neste trabalho, Yu et al. apresentou uma sinapse mecanofotônica artificial com plasticidade mecânica e óptica sinérgica. O dispositivo continha um transistor optoeletrônico e um nanogerador triboelétrico integrado (TENG) em modo de separação de contato. As sinapses mecano-ópticas artificiais possuem grande potencial funcional como interfaces optoeletrônicas interativas, retinas sintéticas e robôs inteligentes.

A sinapse artificial mecanofotônica

O cérebro humano e suas sensações biomecânicas e visuais associadas são essenciais para adquirir informações somatossensoriais e visuais. O cérebro contém uma variedade de neurônios que recebem sinais interativos por meio de vários modos para implementar a computação neuromórfica na área de associação multissensorial. Sinapses de pontos importantes de conexão entre dois neurônios adjacentes durante as transmissões de informações neurais. Yu et al. foram bioinspirados pelo cérebro e sistema nervoso para desenvolver uma sinapse artificial mecanofotônica com plasticidade mecânica e óptica sinérgica. A sinapse artificial mecanofotônica incluiu um transistor optoeletrônico e TENG integrado ( nanogerador triboelétrico ). Durante os experimentos, a equipe usou deposição de vapor químico para depositar grafeno monocamada no transistor optoeletrônico, que eles então empilharam em um floco de sulfeto de molibdênio multicamadas (MoS 2 ) em um substrato de dióxido de silício. Usando a configuração experimental, Yu et al. poderia perceber a modulação óptica e mecânica sinérgica na plasticidade sináptica.

Teste do dispositivo e caracterização mecânico-óptica.
 
Para testar a praticidade do disparo do potencial triboelétrico, a equipe caracterizou a tensão de saída do TENG versus deslocamento mecânico usando um circuito de teste, onde conectou o capacitor dielétrico do transistor e o capacitor do sistema de teste com o TENG em paralelo. Otimizando o MoS 2espessura na heteroestrutura, Yu et al. melhorou a fotossensibilidade do dispositivo e o desempenho elétrico para influenciar potencialmente o dispositivo para aplicações em nível de sistema. Para caracterizar o transistor mecano-optoeletrônico, eles mediram o desempenho de saída sob efeitos sinérgicos para o deslocamento e iluminação do TENG com LED verde em diferentes intensidades de potência. Para então entender a fotorresponsividade sintonizável do transistor mecanofotônico do dispositivo, eles estudaram a influência do deslocamento mecânico na fotocorrente e na fotossensibilidade. Um deslocamento mais positivo pode induzir fotocorrente maior e maior foto-receptividade em relação ao nível de Fermi dependente do campo elétrico e estados eletrônicos na heteroestrutura. A fotorresposta relacionada ao deslocamento mecânico melhorou a fotossensibilidade do dispositivo enquanto regula o recurso em um nível desejado sob demanda.

Condutividade do canal e plasticidade sináptica de longo prazo.

A equipe então regulou a condutividade do canal do transistor usando deslocamento mecânico e iluminação de luz; fundamental para a plasticidade multimodal em sinapses artificiais mecanofotônicas. Eles mantiveram a corrente pós-sináptica basal(PSC) estável em diferentes níveis sob diferentes estados de deslocamento como um pré-requisito para realizar fotorrespostas sinápticas. O trabalho mostrou os efeitos dos comportamentos elétricos modulados por potencial triboelétrico e optoelétricos sobre a corrente pós-sináptica. Eles mantiveram a sinapse artificial mecanofotônica por mais de uma hora sem alterações para fornecer evidências para implementar o módulo óptico e mecânico sinérgico para plasticidade sináptica de longo prazo. A equipe creditou a diminuição da corrente pós-sináptica (PSC) à densidade enfraquecida de buracos no grafeno usado dentro da configuração, por outro lado, eles creditaram os PSCs persistentes a estados localizados no MoS 2e o campo triboelétrico direcional. Por exemplo, durante a iluminação de luz, elétrons fotogerados poderiam ser induzidos no MoS 2. Quando comparado ao trabalho anterior de dispositivos sinápticos bioinspirados , a presente sinapse artificial mecanofotônica realizou simultaneamente a plastificação de modo duplo por meio de sinais mecânicos e visuais.

Simulação de uma rede neural artificial (RNA) para reconhecimento de imagem.

Yu et al. examinou ainda os efeitos sinérgicos da sinapse artificial sob entradas de pulso de luz incorporando diversas informações espaço-temporais. Eles então simularam uma rede neural artificial baseada em percepção de multicamadas (ANN) usando características sinápticas típicas para função de aprendizagem supervisionada usando o Instituto Nacional de Padrões e Tecnologia modificado(MNIST) conjunto de dados de imagem manuscrita. Na RNA, Yu et al. incluiu 28 x 28 neurônios de entrada, 100 neurônios ocultos e 10 neurônios de saída totalmente conectados por meio de pesos sinápticos. O total de 784 neurônios de entrada correspondia a uma imagem MNIST 28 x 28 e os 10 neurônios de saída correspondiam a 10 números arábicos de zero a nove. A equipe construiu a RNA bioinspirada pela retina humana, que, em contraste, contém bilhões de células nervosas para formar uma complexa rede de três camadas. Em seguida, eles mostraram como melhorar a periodicidade, estabilidade e repetibilidade do dispositivo melhorou a simulação de RNA para reconhecimento de imagem.

Panorama

Desta forma, Jinran Yu e seus colegas desenvolveram uma sinapse artificial mecanofotônica com plasticidade sináptica multimodal sinérgica. A equipe usou o potencial triboelétrico para conduzir o transistor sináptico e regular a troca de transferência de carga na heteroestrutura para facilitar fotocorrentes pós-sinápticas, fotocondutividade persistente e fotossensibilidade. A configuração também permitiu memória de longo prazo e facilitação neural consecutiva. A equipe então simulou uma rede neural artificial (RNA) para mostrar a viabilidade da plastificação mecânica para promover a precisão do reconhecimento de imagem. O trabalho abrirá caminho para o desenvolvimento de dispositivos neuromórficos multifuncionais e interativos.

 

.
.

Leia mais a seguir